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ABSTRACT

In classical transport theory, the distribution of free-path lengths of particles traveling through
the media is exponential. However, in certain inhomogeneous media, the locations of scattering
centers are spatially correlated, leading to a free-path length distribution that is not exponential.
This has motivated the derivation of a generalized transport theory, also referred to as nonclassi-
cal transport, in which no assumption is made about the shape of the particle’s free-path length
distribution. In nonclassical transport, the free-path length of the particle is an independent vari-
able in the (generalized) nonclassical transport equation. Recently, a Spectral Approach (SA) was
introduced to deal with the free-path dependency on the nonclassical transport equation. In the
SA, the nonclassical angular flux is represented as a truncated Laguerre series in the free-path
variable. As an outcome, this representation generates a system of equations that have the form
of classical transport equations. In this work, we use a synthetic acceleration scheme to speed up
the iteration algorithm for the solution of the one-speed nonclassical spectral equations in the dis-
crete ordinates formulation. The results of our numerical experiments indicate that the synthetic
acceleration scheme is effective in reducing the number of iterations needed to obtain an accurate
solution.

KEYWORDS: nonclassical transport, spectral approach, synthetic acceleration, Fourier analysis

1. INTRODUCTION

The study of particle transport has a wide range of applications in nuclear engineering, including reactor
design, fuel cycle optimization, and the development of safeguards and monitoring systems [1]. In most of
these applications, the particle’s free-path length distribution (i.e., the distribution of the distances traveled
by the particle between collisions) is given by an exponential, which is an inherent assumption of (classical)
transport theory. Nevertheless, there are situations in which the free-path length distribution is not well-
represented by an exponential. Examples of such situations include applications in photon transport in
atmospheric clouds [2], neutron transport in certain types of nuclear reactors [3], and image rendering
in computer graphics [4]. To mathematically address particle transport in such situations, a nonclassical
transport equation has been derived [5]. This equation extends the phase-space to include the independent
“memory” variable s, representing the distance, or free-path, traveled by the particle between interactions.

A Spectral Approach was introduced in [6] to deal with the free-path dependency on the nonclassical trans-
port equation. In the SA, the nonclassical angular flux is represented as a truncated Laguerre series in
the variable s. As an outcome, this representation generates a system of equations that have the form of
classical transport equations and can therefore be solved by current deterministic algorithms. Numerical
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results for one-speed slab-geometry problems were provided to validate the nonclassical spectral equations.
Particularly, the authors have used the conventional discrete ordinates (SN ) formulation and the Diamond
Difference method (DD) to deal with the angular and spatial dependencies on the angular flux, respectively.
The resulting sweeping equations were used in conjunction with the Source Iteration (SI) scheme to gen-
erate numerical results for the classical scalar flux.

Similar to classical transport calculations (cf. [7]), the SI scheme demands a high number of iterations to
achieve accurate results in nonclassical diffusive problems. Different techniques can be used to reduce the
number of iterations needed in SI schemes, among which one can find synthetic acceleration methods. The
first synthetic acceleration scheme proposed to solve the nonclassical spectral SN equations was introduced
in [8], based on the S2 synthetic acceleration (S2SA) method presented in [7] for the classical case.

The original contribution of the present work is a new acceleration technique for solving the nonclassical
spectral SN equations, which we call P1 synthetic acceleration (P1SA), based on the diffusion synthetic
acceleration (DSA) approach for the classical transport equation [7]. Moreover, a Fourier convergence
analysis has been developed to estimate the analytical spectral radius for SI , S2SA, and P1SA methods
when applied to the nonclassical spectral SN equations. By estimating the spectral radius of each method,
we can infer if the iterative scheme is convergent and compare their convergence rate.

In the next section, we present the one-speed, slab-geometry nonclassical transport equation and briefly
describe the Spectral Approach [6]. Moreover, a synthetic acceleration method for the one-speed slab-
geometry nonclassical spectral SN equations is described. In Section 3, we summarize the Fourier conver-
gence analysis applied to the SI , S2SA, and P1SA methods. In Section 4, we present numerical results for
two classes of test problems as well as the spectral radii obtained when using each of the three approaches.
We close the paper in Section 5 with a discussion about the results and potential future work.

2. NONCLASSICAL FORMULATION AND SYNTHETIC ACCELERATION

In the classical theory of particle transport, the macroscopic total cross section σt is independent of the
particle’s direction-of-flight and of the particle’s free-path s, defined as the distance traveled by the parti-
cle since its previous interaction. This assumption leads to an exponential free-path distribution function:
p(s) = σte

−σts. In nonclassical transport, this assumption is relaxed; following [5,6,8], in this work we
consider that σt is a function of s, such that [5]

p(s) = σt(s)e
−

s∫
0

σt(s′)ds′

. (1)

By considering the generalized p(s) given in Eq. (1), we obtain a generalized version of the linear Boltz-
mann equation [5], referred to as nonclassical transport equation. In slab geometry, the steady-state, one-
speed version of this equation can be written in an “initial value” form as [6]

∂Ψ(x, µ, s)

∂s
+ µ

∂Ψ(x, µ, s)

∂x
+ σt(s)Ψ(x, µ, s) = 0, s > 0, 0 < x < X, (2a)

Ψ(x, µ, 0) =
c

2

1∫
−1

∞∫
0

σt(s
′)Ψ(x, µ′, s′)ds′dµ′ +

Q(x)

2
, 0 < x < X, (2b)

Ψ(0, µ, s) = 0, 0 < µ ≤ 1, s > 0, (2c)
Ψ(X,µ, s) = 0, −1 ≤ µ < 0, s > 0, (2d)

Φc(x) =

1∫
−1

∞∫
0

Ψ(x, µ, s)dsdµ. (2e)

Equations (2) are used to represent nonclassical transport problems on a homogeneous slab with azimuthal
symmetry and vacuum boundaries. Here, Ψ is the nonclassical angular flux, X is the slab length, x is the
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spatial variable, µ is the cosine of the polar angle, Q is an isotropic internal source, c is the scattering ratio,
and Φc is the recovered scalar flux. Following [6], we define Ψ as

Ψ(x, µ, s) ≡ e
−

s∫
0

σt(s′)ds′
M∑

m=0

ψm(x, µ)Lm(s), (3)

where ψm is the Laguerre moment of order m, M is the truncation order of the Laguerre expansion, and
Lm is the mth Laguerre polynomial.

We then carry out the following steps, summarized here due to space constraints: (i) introduce Eq. (3) into
Eqs. (2) and perform a series of algebraic manipulations [6]; and (ii) apply the discrete ordinates formulation
[1]. This allows us to write the following nonclassical spectral problem:

µn
dψm,n(x)

dx
+ ψm,n(x) = S(x) +

Q(x)

2
−

m−1∑
j=0

ψj,n(x), 0 < x < X, m = 0 :M,n = 1 : N, (4a)

S(x) =
c

2

N∑
n=1

ωn

M∑
k=0

ψk,n(x)

 ∞∫
0

p(s)Lk(s)ds

 , 0 < x < X, (4b)

ψm,n(0) = 0, m = 0 :M,n = 1 :
N

2
, (4c)

ψm,n(X) = 0, m = 0 :M,n =
N

2
+ 1 : N, (4d)

Φc(x) =
N∑

n=1

ωn

M∑
m=0

ψm,n(x)

∞∫
0

Lm(s)e
−

s∫
0

σt(s′)ds′

ds. (4e)

In Eqs. (4), the angular variable µ has been discretized in N discrete values µn; ψm,n is the Laguerre
moment of order m and direction n; ωn is a weight of the Gauss-Legendre angular quadrature, and the
scalar flux Φc(x) is recovered with Eq. (4e). Equations (4a) and (4b) are the one-speed, slab-geometry
nonclassical spectral SN equations. In [6], the authors lag the scattering source on the right-hand side
of Eq. (4a), then numerically solve it using the conventional fine-mesh DD method with the SI scheme.
Equations (4a) and (4b) in the SI scheme can be written as

µn
dψ

(l+1)
m,n (x)

dx
+ ψ(l+1)

m,n (x) = S(l)(x) +
Q(x)

2
−

m−1∑
j=0

ψ
(l+1)
j,n (x), (5a)

S(l)(x) =
c

2

N∑
n=1

ωn

M∑
k=0

ψ
(l)
k,n(x)χk, (5b)

χk =

∞∫
0

p(s)Lk(s)ds, (5c)

for 0 < x < X , m = 0 :M and n = 1 : N . Here, l is the iteration index.

Synthetic acceleration methods contain an error-correction step, which uses an approximation of the error
equation to estimate the error at each iteration [7,8]. Consider an error in the l + 1 iteration defined as

ϵ(l+1)
m,n (x) ≡ ψm,n(x)− ψ(l+1/2)

m,n (x), (6)

where ψm,n(x) is the analytical solution of Eqs. (4) and ψ(l+1/2)
m,n (x) is the numerical solution of Eqs. (5)

in the iteration l + 1/2. Consequently, we define
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S(l+1)
ϵ (x) ≡ S(x)− S(l+1/2)(x) =

c

2

N∑
n=1

ωn

M∑
k=0

ϵ
(l+1)
k,n (x)χk. (7)

We write (5a) for the iteration l+ 1/2 and subtract this equation from Eq. (4a). Adding and subtracting the
term Sl+1/2(x) in the resulting equation, we combine the terms to obtain

µn
dϵ

(l+1)
m,n (x)

dx
+ ϵ(l+1)

m,n (x) = S(l+1)
ϵ (x) + S(l+1/2)(x)− S(l)(x)−

m−1∑
j=0

ϵ
(l+1)
j,n (x), (8)

for 0 < x < X , m = 0 : M and n = 1 : N . With this equation for the error, we can write a “general”
standard synthetic acceleration method as

µn
dψ

(l+1/2)
m,n (x)

dx
+ ψ(l+1/2)

m,n (x) = S(l)(x) +
Q(x)

2
−

m−1∑
j=0

ψ
(l+1/2)
j,n (x), (9a)

S(l)(x) =
c

2

N∑
n=1

ωn

M∑
k=0

ψ
(l)
k,n(x)χk, (9b)

µn
dϵ

(l+1)
m,n (x)

dx
+ ϵ(l+1)

m,n (x) = S(l+1)
ϵ (x) + S(l+1/2)(x)− S(l)(x)−

m−1∑
j=0

ϵ
(l+1)
j,n (x), (9c)

S(l+1)
ϵ (x) =

c

2

N∑
n=1

ωn

M∑
k=0

ϵ
(l+1)
k,n (x)χk, (9d)

S(l+1)(x) = S(l+1/2)(x) + S(l+1)
ϵ (x), (9e)

for 0 < x < X , m = 0 :M and n = 1 : N . Next, we briefly summarize the steps involved in the synthetic
acceleration scheme.

For the first iteration, we solve Eq. (9a) with S(0)(x) = 0 to calculate ψ(1/2)
m,n (x) for all values of m and

n, which consequently yields Φ
(1/2)
c (x). For m = 0, the last term on the right-hand side of Eq. (9a) is

zero. Thus, for m > 0, this term is known because we have already calculated the terms up to m − 1 in
the previous steps. After this, S(1/2)(x) is calculated by Eq. (9b). Then, instead of moving on to the next
iteration as in the standard SI scheme, we numerically solve Eq. (9c) for m = 0 : M and n = 1 : N

to determine S(1)
ϵ (x), defined in Eq. (9d). Next, we use Eq. (9e) to “correct” the source term, obtaining

S(1)(x). After this correction, we perform the next iteration in Eq. (9a), and all the process is repeated until
a stopping criterion is satisfied.

In this general case, Eq. (9c) for ϵm,n(x) has the same form as the transport equation. Synthetic accelera-
tion methods rely on choosing simplified models to approximate the solution of this error-problem. If we
consider a S2 model, we have the S2SA method [8], and Eq. (9c) becomes

± 1√
3

dϵ
(l+1)
m,± (x)

dx
+ϵ

(l+1)
m,± (x) =

c

2

M∑
k=0

[ϵ
(l+1)
k,+ (x)+ϵ

(l+1)
k,− (x)]χk+S

(l+1/2)(x)−S(l)(x)−
m−1∑
j=0

ϵ
(l+1)
j,± (x), (10)

for 0 < x < X , m = 0 : M and n = 1 : N . In Eq. (10), ϵ(l+1)
k,+ and ϵ(l+1)

k,− represent the error in the

l + 1 iteration concerning the Laguerre moment ψ(1/2)
m,n (x) in the positive and negative discrete directions,

respectively, as generated by the S2 formulation. Equation (10) is solved by lagging the first term on the
right-hand side, then numerically solving it using the conventional fine-mesh DD method with the SI
scheme.

4



P1 Synthetic Acceleration for the Solution of Nonclassical Spectral SN Equations

Furthermore, if we consider a diffusion approximation for the error-problem, we have the P1SA method,
with Eqs. (9c) and (9d) being substituted by

dΥ
(l+1)
m (x)

dx
+ υ(l+1)

m (x) = c
M∑
k=0

υ
(l+1)
k (x)χk + 2S(l+1/2)(x)− 2S(l)(x)−

m−1∑
j=0

υ
(l+1)
j (x), (11a)

1

3

dυ
(l+1)
m (x)

dx
+Υ(l+1)

m (x) = −
m−1∑
j=0

Υ
(l+1)
j (x), (11b)

for 0 < x < X , m = 0 : M and n = 1 : N . Here, Υm represents the second order Legendre moment for
ϵl+1
m,n(x), while υm represents the first order Legendre moment for ϵl+1

m,n(x). We numerically solve Eqs. (11)
considering vacuum boundary conditions of the Mark’s type [9], and substitute Eq. (9e) by

S(l+1)(x) = S(l+1/2)(x) +
c

2

M∑
k=0

υ
(l+1)
k (x)χk . (12)

3. FOURIER CONVERGENCE ANALYSIS

Let us consider the SI scheme. By taking Q(x) = 0 and considering a single Fourier error mode with
arbitrary −∞ < λ <∞, we have adapted the assumptions considered in [7] to

S(l)(x) = wl(λ)eiλx, (13a)

ψ(l+1)(x) = αm,n(λ)w
l(λ)eiλx. (13b)

Substituting Eqs. (13) into Eqs. (5), we write

(µniλ+ 1)αm,n(λ) = 1−
m−1∑
j=0

αj,n(λ), (14a)

w(λ) =
c

2

N∑
n=1

ωn

M∑
k=0

αk,n(λ)χk, (14b)

for m = 0 :M and n = 1 : N . Solving Eq. (14a) for α(λ) we obtain

αm,n(λ) =
m∑
j=0

(−1)j
(
m
j

)
(µniλ+ 1)j+1

, m = 0 :M, n = 1 : N. (15)

Introducing Eq. (15) in Eq. (14b) we obtain

w(λ) =
c

2
χ0I1 +

c

2

M∑
k=1

χk

 I1 + k∑
j=1

(−1)j
(
k

j

)
Ij+1

 , (16)

where

Ij+1 =

∫ 1

−1

dµ

(µiλ+ 1)j+1
≈

N∑
n=1

ωn

(µniλ+ 1)j+1
, j ≥ 0. (17)

The integral in Eq. (17) has an analytical result for integer j. Hence, the analytical spectral radius SR is [7]

SR = max
−∞<λ<∞

w(λ). (18)
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Next, we consider the S2SA approach. By taking Q(x) = 0 and considering a single Fourier error mode
with arbitrary −∞ < λ <∞, we have adapted the assumptions considered in [7] to

ψ(l+1/2)
m,n (x) = wl(λ)αm,n(λ)e

iλx, (19a)

S(l)(x) = wl(λ)eiλx, (19b)

ϵ
(l+1)
m,± (x) = wl(λ)γm,±(λ)e

iλx, (19c)

S(l+1/2)(x) = wl(λ)β(λ)eiλx, (19d)

S(l+1)(x) = wl+1(λ)eiλx, (19e)

for m = 0 : M and n = 1 : N . We have introduced Eqs. (19) into Eqs. (9), with Eq. (9c) replaced by
Eq. (10), and numerically solving the resulting system in order to determine the analytical SR for known
input data.

For the P1SA method we have applied a similar methodology. For this case we consider

ψ(l+1/2)
m,n (x) = wl(λ)αm,n(λ)e

iλx, (20a)

S(l)(x) = wl(λ)eiλx, (20b)

υ(l+1)
m (x) = wl(λ)γm(λ)eiλx, (20c)

Υ(l+1)
m (x) = wl(λ)ρm(λ)eiλx, (20d)

S(l+1/2)(x) = wl(λ)β(λ)eiλx, (20e)

S(l+1)(x) = wl+1(λ)eiλx, (20f)

for m = 0 : M and n = 1 : N . We have introduced Eqs. (20) into Eqs. (9), with Eq. (9c) replaced by
Eqs. (11), and numerically solved the resulting system in order to determine the analytical SR for known
input data.

The computational code for these Fourier convergence analyses has c, M , and p(s) as inputs and the ana-
lytical SR as output. In all cases, the numerical SR is estimated by [10]

SRNumerical =
∥Φi+2

c −Φi+1
c ∥2

∥Φi+1
c −Φi

c∥2
, (21)

where Φc is the vector of classical scalar fluxes.

4. NUMERICAL RESULTS

In order to illustrate the methodology presented in Section 2, we consider a slab-geometry model-problem
with the following features: X = 20 cm, σt = 1.0 cm−1, N = 16, 200 spatial discretization cells, vacuum
boundary conditions, Q(x) = 10 cm−3s−1 and the stopping criterion given by [8]

∥Φl+1
c −Φl

c∥2
∥Φl

c∥2
≤ 10−6 = ζ. (22)

It has been shown [12] that certain diffusion-based approximations to the classical transport equation can
be represented exactly by Eqs. (2a) and (2b) when the total cross-section σt(s) (and hence p(s)) is appro-
priately chosen. That being the case, the collision rate density (σtΦdb(x)) of the diffusion-based approxi-
mations to the classical transport equation (e.g., simplified P1 or simplified P3 equations) should match the
collision rate density generated by the solution of Eqs. (2). That is,

σtΦ
db(x) =

∞∫
0

σt(s)

1∫
−1

Ψ(x, µ, s)dµds. (23)
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Table 1: Parameters a, b, c and d [12].

Parameter Value
a 5.642025
b −2.941340
c 0.469086
d −1.161256

Following the procedure described in Section 2, Eq. (23) can be approximated as

σtΦ
db(x) =

N∑
n=1

ωn

M∑
k=0

ψk,n(x)χk. (24)

Still considering the reference [12], if we assume the free-path distribution function as p(s) = 3σ2t se
−
√
3σts

in the solution of Eqs. (2), the right-hand side of Eq. (24) should match the collision-rate density of the
classical SP1 model. In a similar fashion, if we assume the free-path distribution function as p(s) =
sσ2t (ae

bσts + cedσts) in the solution of Eqs. (2), the right-hand side of Eq. (24) should match the collision-
rate density of the classical SP3 model. The values of a, b, c and d are given in Table 1.

Tables 2 and 3 illustrate the applicability of the nonclassical model for nonexponential p(s), with the nu-
merical results obtained being very close to the SP1 and SP3 reference results [13].

Table 2: Collision-rate density for p(s) = 3σ2t se
−
√
3σts.

x (cm) SP1[13] P1SA Relative error (%)
M = 10 M = 50 M = 70 M = 10 M = 50 M = 70

c = 0.0

2 9.8434E0 9.8448E0 9.8448E0 9.8448E0 1.422E-2 1.422E-2 1.422E-2
10 9.9999E0 1.0000E1 9.9999E0 9.9999E0 1.000E-3 0.0000E0 0.0000E0
18 9.8434E0 9.8448E0 9.8448E0 9.8448E0 1.422E-2 1.422E-2 1.422E-2

c = 0.5

2 1.8988E1 1.8991E1 1.8991E1 1.8991E1 1.579E-2 1.579E-2 1.579E-2
10 1.9999E1 1.9999E1 1.9999E1 1.9999E1 0.0000E0 0.0000E0 0.0000E0
18 1.8988E1 1.8991E1 1.8991E1 1.8991E1 1.579E-2 1.579E-2 1.579E-2

c = 0.9

2 7.4591E1 7.4587E1 7.4587E1 7.4587E1 5.362E-3 5.362E-3 5.362E-3
10 9.9364E1 9.9365E1 9.9365E1 9.9365E1 1.006E-3 1.006E-3 1.006E-3
18 7.4591E1 7.4587E1 7.4587E1 7.4587E1 5.362E-3 5.362E-3 5.362E-3

Tables 4 and 5 display the analytical and numerical results obtained for the spectral radii SR with the same
two choices of p(s), according to the methodology described in Section 3 and Eq. (21). For numerical SR
calculations, we consider a homogeneous problem with σt = 1.0 cm−1, X = 100 cm, N = 32, 10000
spatial discretization cells, vacuum boundaries, ζ = 10−12,Q(x) = 10 cm−3s−1 (adapted from [8]). As we
can see in these tables, the synthetic acceleration methods are efficient in reducing the number of iterations
required to achieve convergence. This is a consequence of the decrease in the SR.

7
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Table 3: Collision-rate density for p(s) = sσ2t (ae
bσts + cedσts).

x (cm) SP3[13] P1SA Relative error (%)
M = 10 M = 50 M = 70 M = 10 M = 50 M = 70

c = 0.0

2 9.8204E0 9.8190E0 9.8212E0 9.8212E0 1.425E-2 8.146E-3 8.146E-3
10 9.9999E0 9.9999E0 9.9999E0 9.9999E0 0.0000E0 0.0000E0 0.0000E0
18 9.8204E0 9.8190E0 9.8212E0 9.8212E0 1.425E-2 8.146E-3 8.146E-3

c = 0.5

2 1.9044E1 1.9042E1 1.9046E1 1.9046E1 1.050E-2 1.050E-2 1.050E-2
10 1.9999E1 1.9999E1 1.9999E1 1.9999E1 0.0000E0 0.0000E0 0.0000E0
18 1.9044E1 1.9042E1 1.9046E1 1.9046E1 1.050E-2 1.050E-2 1.050E-2

c = 0.9

2 7.6388E1 7.6380E1 7.6386E1 7.6386E1 1.047E-2 2.618E-3 2.618E-3
10 9.9299E1 9.9299E1 9.9299E1 9.9299E1 0.0000E0 0.0000E0 0.0000E0
18 7.6388E1 7.6380E1 7.6386E1 7.6386E1 1.047E-2 2.618E-3 2.618E-3

5. DISCUSSION

As we can see in Tables 2 and 3, the nonclassical model correctly reproduces the reference SP1 and SP3

results for this model-problem when considering the appropriate p(s). However, depending on the p(s)
choice, the improper integral in Eq. (5c) may not converge. In this case, it is not possible to obtain numerical
results by performing the methodology proposed. We intend to test different p(s) and parameters σt in
order to investigate the improper integral’s behavior. Notice that, for the fine mesh considered in the model-
problem presented, there was not a significant advantage in increasing the truncation order M to values
higher than ten. In future work, we intend to investigate the performance for a coarser mesh and to expand
the methodology to an energy multigroup formulation.

Table 4: SR for p(s) = 3σ2t se
−
√
3σts and M = 70.

c Number of iterations Numerical SR Analytical SR

SI S2SA P1SA SI S2SA P1SA SI S2SA P1SA

0.8 117 14 15 0.7997 0.1993 0.1994 0.8000 0.2005 0.2005

0.9 240 15 16 0.8996 0.2226 0.2233 0.9000 0.2251 0.2251

0.99 2220 15 16 0.9897 0.2434 0.2443 0.9900 0.2475 0.2475

0.999 15902 15 16 0.9986 0.2452 0.2461 0.9990 0.2497 0.2497

0.9999 47299 15 16 0.9996 0.2456 0.2471 0.9999 0.2499 0.2499

According to Tables 4 and 5, for the model-problem presented, we can conclude that the P1SA and the
S2SA are efficient in reducing the number of iterations required to achieve a converged solution. The
advantage of synthetic acceleration methods is clear when c ≈ 1, since the number of iterations required
in the standard SI for this case is considerably higher when compared to the number of iterations required
in the synthetic acceleration methods. With the Fourier convergence analysis proposed, we can predict the
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Table 5: SR for p(s) = sσ2t (ae
bσts + cedσts) and M = 70.

c Number of iterations Numerical SR Analytical SR

SI S2SA P1SA SI S2SA P1SA SI S2SA P1SA

0.8 117 13 14 0.7997 0.1623 0.1674 0.8000 0.1693 0.1693

0.9 240 14 15 0.8996 0.1865 0.1877 0.9000 0.1911 0.1911

0.99 2220 14 15 0.9897 0.2097 0.2099 0.9900 0.2114 0.2114

0.999 15902 14 15 0.9986 0.2104 0.2115 0.9990 0.2135 0.2135

0.9999 47299 14 15 0.9996 0.2117 0.2119 0.9999 0.2137 0.2137

iterative methods’ performance, which is very useful upon developing new iterative schemes. The increase
of truncation order M to values higher than ten has not significantly affected the results. As future work,
we intend to investigate the methods’ performance when the cell’s optical thickness increases, analyzing
the numerical SR as a function of the optical thickness. In both the S2SA and P1SA approaches presented
here, we considered the same mesh for the main problem and the error problem. Thus, we intend to test
problems using a coarser mesh for the error-problem.
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