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ABSTRACT

The “Quasidiffusion” (QD) method is a well-known iterative technique for efficiently solving
particle transport problems. Each QD iteration consists of a high-order SN sweep, followed by
a low-order “Quasidiffusion” calculation. QD has two defining characteristics: (i) its iterations
converge rapidly for any spatial grid, and (ii) the converged scalar fluxes from the high-order SN

sweep and the low-order Quasidiffusion calculation differ – by spatial truncation errors – from
each other, and from the scalar flux solution of the SN equations. In this paper we show that by
including a transport consistency factor in the low-order QD equation, the converged high-order
and low-order QD scalar fluxes become equal to each other, and to the converged SN scalar flux.
We also present CQD numerical results to demonstrate the effect of the transport consistency
factor on stability.
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1. INTRODUCTION

The Quasidiffusion (QD) method is an established iterative method for solving particle transport prob-
lems [1–3]. (In the Astrophysical community, QD is widely-used and usually called the Variable Eddington
Factor (VEF) method.) Each QD iteration has two parts: a high-order SN sweep using a scattering source
estimated from the previous iteration, followed by a low-order “Quasidiffusion” calculation containing an
Eddington factor estimated from the SN sweep. The discretized QD method converges rapidly for any
choice of spatial grid. However, the converged high-order and low-order scalar fluxes, and the scalar flux
obtained by solving the SN equations, all differ by spatial truncation errors. Thus, QD is not a true acceler-
ation method: its converged scalar fluxes differ from the scalar flux calculated from the converged angular
flux solution of the SN equations. In this paper, we show that by including a transport consistency factor in
the discretized low-order QD equations, the converged high-order transport and low-order QD scalar fluxes
become equal to each other, and to the SN scalar flux. The new consistency factor is formally small – it is
O(Σth)2. Setting this factor to zero introduces a second-order Quaisdiffusion error and yields the familiar
inconsistent QD method. Keeping this factor, we obtain the new Consistent Quasidiffusion (CQD) method,
which is a true transport acceleration method, such as Diffusion Synthetic Acceleration (DSA) [3] and
Coarse Mesh Finite Difference (CMFD) [4,5]. This paper includes numerical results from implementing
and testing the CQD method in a 1-D SN code.

Modifications of QD that make it a true acceleration method have been proposed in two earlier pub-
lications [6,7]. In this previous work, the low-order QD equations are modified in ways that require the
calculation and storage of cell-edge scalar flux estimates. Our simpler CQD method does not require such
calculations, and is closely-related to the well-known Coarse Mesh Finite Difference (CMFD) and Diffusion
Synthetic Acceleration (DSA) methods [3–5]. (The derivation of CQD in this paper demonstrates the close
theoretical link between CQD and CMFD.)
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Unfortunately, the inclusion of the CQD transport consistency factor has a harmful effect on the sta-
bility of the method. We have implemented and tested the CQD method in a 1-D SN code, and we present
numerical results from this code in this paper. Our results show that the CQD and CMFD methods have
nearly the same stability properties: they both converge rapidly for problems with optically thin spatial cells,
but they degrade at nearly the same rate as the spatial cells increase in optical thickness. Currently, we are
experimenting with different ideas to try to ameliorate this difficulty. In future work, we plan to develop a
Fourier stability analysis, to theoretically predict the spectral radius of the CQD method and validate our
experimental results.

Although the stability properties of CQD are disappointing compared to those of QD, the results in this
paper are still potentially useful. These results show that with minimal effort, a QD (or VEF) code can be
modified to include the CQD method, and thereby become “consistent.” There are situations in which this
capability could be useful. For one example, if a problem that is considered mostly suitable for QD contains
“transport” regions, in which the QD approximation might be inaccurate, it would be possible to run this
problem with the CQD method turned on, to assess whether the transport effects are significant. A second
example would be setting the CQD transport consistency factor equal to zero in “diffusive” regions of the
problem (the QD approximation), but retaining the consistency factor in “transport” regions. In general, the
ability to fully or partially convert a QD code to a CQD code could add meaningful computational flexibility
to the code.

The remainder of this paper is organized as follows. Section 2 contains theoretical derivations of the
QD, CMFD, and CQD methods. Section 3 contains computational results from the implementation of the
QD, CMFD, and CQD methods in our 1-D SN test code. The final Section 4 includes a summary and
discussion.

2. THEORY

Using standard notation, we consider (i) the following 1-D, fixed-source, monoenergetic, spatially
discrete, isotropically-scattering SN equations:

µn
hj
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2
− ψn,j− 1
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+ Σt,jψn,j =

Σs,j
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)
ψn,j− 1

2
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which hold for 1 ≤ j ≤ J and 1 ≤ n ≤ N , and (ii) prescribed incident flux boundary conditions:

ψn, 1
2

= Ψl
n , µn > 0 , (1c)

ψn,J+ 1

2
= Ψr

n , µn < 0 . (1d)

In the following, we derive the CQD method for Eqs. (1).

First, we operate on Eq. (1a) by
∑N

n=1(·)wn and define the cell-average and cell-edge angular flux
moments:

φk,j =
N∑
n=1

(µn)kψn,jwn , φk,j+ 1

2
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to obtain the familiar neutron balance equation:

1

hj

(
φ1,j+ 1

2
− φ1,j− 1

2

)
+ Σa,jφ0,j = Qj , (3)

where Σa,j = Σt,j −Σs,j . Also, we multiply Eqs. (1c) and (1d) by |µn|wn and sum each equation over the
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incident directions of flight, to obtain the partial currents:∑
µn>0
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We also operate on Eq. (1a) by
∑N

n=1 µn(·)wn and rearrange to obtain the identity:
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which is “centered” on cell j. In Eq. (5a) we have introduced the cell-edge Eddington factor:

Ej+ 1

2
=
φ2,j+ 1

2

φ0,j+ 1

2

. (5b)

Eqs. (5) are satisfied by the converged solution of the SN equations.

The CQD method utilizes an identity that is similar to Eqs. (5), but instead is “centered” on cell edges:
φ1,j+ 1
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= − 1
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and D̃j+ 1

2
is a dimensionless transport consistency factor:
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Like Eqs. (5), Eqs. (6) are satisfied by the converged solution of the SN equations. Because of Eq. (5a), the
consistency factor D̃j+ 1

2
is formally O(Σth)2 – it vanishes as the optical width of a spatial cell limits to

zero. The CQD method assumes that D̃j+ 1

2
is sufficiently small that, when it is used in an iterative scheme,

it can be lagged.

The CQD method also uses identities derived from the “boundary” Eqs. (4). Eq. (4a) is written as:

2J +
l =

∑
µn>0

2µnψn, 1
2
wn

=

N∑
n=1

(µn + |µn|)ψn, 1
2
wn

=
N∑
n=1

µnψn, 1
2
wn +

N∑
n=1

|µn|ψn, 1
2
wn

= φ1, 1
2

+

(∑N
n=1 |µn|ψn, 1

2
wn

φ0,1

)
φ0,1

≡ φ1, 1
2

+Blφ0,1 , (7a)
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where
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2
wn

φ0,1
. (7b)

Similarly, Eq. (4b) is written as:
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2
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2
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(The boundary factors Bl and Br are similar to the Eddington factors. They are assumed to be “stable” in
value from one iteration to the next, and in the CQD method they are lagged.)

At the beginning of the (`+ 1)st CQD iteration, a scalar flux estimate φ`0,j is known from the previous
`th iteration (or is assigned if ` = 0). The first part of the CQD iteration consists of a transport sweep,
in which φ`0,j is used to estimate the scattering source, and then certain cell-average and cell-edge flux
moments are calculated and stored. From Eqs. (1) and (2), these operations are defined by:
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In the second “low-order” part of a CQD iteration, the estimates from Eqs. (10) are used to determine
new estimates of the cell-averaged Eddington factors [Eq. (6c)], the transport consistency factors [Eq. (6d)],
and the boundary factors [Eqs. (7b) and (8b)]:
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These are introduced in Eqs. (3), (6a), (7a), and (8a), yielding the following discrete linear system of
equations for the cell-edge scalar fluxes and the cell-edge currents:
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[Eqs. (12a) hold for 1 ≤ j ≤ J , and Eqs. (12b) hold for 1 ≤ j ≤ J−1.] Eqs. (12b), (12c), and (12d) enable
the cell-edge currents to be eliminated from Eqs. (12a), yielding an easily-solved linear tridiagonal system
of “CQD” equations for the cell-averaged scalar fluxes φ`+1

0,j . The inclusion of the consistency factors in
Eq. (12b) ensures that if the CQD method converges, the converged high-order and low-order CQD scalar
fluxes will equal the converged SN scalar fluxes.

This completes our derivation of the CQD method. Next, we show how this method relates to the
standard Quasidiffusion (QD) and the Coarse Mesh Finite Difference (CMFD) methods.

The standard QD method is obtained from CQD by setting, in Eqs. (12b), the transport consistency
factors equal to zero:

D̃
`+ 1

2

j+ 1

2

= 0 . (13)

The consistency factors are formally O(Σth)2; setting them to zero introduces a second-order truncation
error that drives the high-order scalar flux estimates in Eqs. (10a), and the low-order scalar flux estimates
in Eqs. (12), away from each other and from the converged scalar flux solution of the SN equations. (The
inclusion of the CQD consistency factors prevents the “contamination” of the SN solution.)

The CQD method derived in this paper is closely-related to the CMFD method for the case in which
the high-order and low-order spatial grids are equal. (This special case of CMFD is sometimes called
“Nonlinear Diffusion Acceleration” (NDA), but we simply call it CMFD here. The CQD method can easily
be generalized to the case of a coarser low-order spatial grid, but this is not done in the present paper.)

The CQD method is based on the identity expressed in Eqs. (6). The CMFD method (with fine-grid
equal to the coarse-grid) is based on the following similar identity:
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2
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replacing Eq. (12b) by:
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where

D̂
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2
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Note: In the CMFD method, no changes are made to the boundary conditions Eqs. (12c) and (12d).

The CQD method is premised on the concept that the CQD consistency factor [Eq. (11a)] is sufficiently
resolved by the spatial grid that it is small and can be lagged, while the CMFD method is premised on the
idea that Fick’s Law is sufficiently satisfied that the CMFD transport consistency factor [Eq. (14b)] is
sufficiently small and can be lagged. Because Fick’s Law is not inherently satisfied by the solution of a
transport problem, it is plausible that the CMFD consistency factor may be larger than the simple CQD
consistency factor, and hence that CMFD will be less stable than CQD. (This motivated our work on the
CQD method.) This hope turned out to be somewhat premature, as we discuss next.

3. NUMERICAL RESULTS

We have implemented the Source Iteration (SI), CMFD, QD, and CQD methods in a 1-D test code and
compared these methods applied to several different problems. Our results are presented below.

Problem 1 is designed to demonstrate that (i) the SI, CMFD, and CQD methods are encoded correctly,
and (ii) the QD method produces different scalar fluxes. The physical system is a slab 0 < x < 25 cm with
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Figure 1: QD and SN Scalar Fluxes for Problem 1

vacuum boundaries. The system has five subregions, each 5 cm thick. Going from left to right, subregions
1, 3, and 5 have Σt = 1.0 cm−1, Σs = 0.9 cm−1, and Q = 0 cm−3 sec−1. Subregions 2 and 4 have
Σt = 1.0 cm−1, Σs = 0.99 cm−1, and Q = 1.0 cm−3 sec−1. This problem is symmetric about its
midpoint, x = 25.0. We ran the problem using (i) the standard S32 Gauss-Legendre quadrature set, (ii) a
spatial grid with uniform spatial cells of thickness h = 1.0 cm, and (iii) a convergence criterion of 10−9.
The resulting scalar fluxes are plotted in Figure 1. The numerical values of the SI, CMFD, and CQD scalar
fluxes agreed to within the 10−9 convergence criterion, and the QD scalar fluxes differed from these by
small but significant amounts. The numerical solutions were all symmetric about the midpoint x = 25. (We
include this plot as evidence that our test code was properly debugged.)
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Problems 2, 3, and 4 were designed to assess the effect of the transport correction factor on the stability
of CQD, and to compare this stability to that of CMFD. Problem 2 is a homogeneous slab of variable
thickness 0 ≤ x ≤ X = 100h, where h is the (variable) width of a spatial cell. (The system is always
J = 100 cells thick.) The boundaries are vacuum, and within the system, Σt = 1.0 cm−1, Σs = 0.99
cm−1, and Q = 1.0 cm−3 sec−1. We used the S32 quadrature set with a convergence criterion of 10−9.

Assessing the effect of the spatial cell width h on the rate of convergence of the CQD (and CMFD)
methods can be done by estimating the spectral radius. To do this, we calculate the L2 norm of the difference
between the cell-averaged scalar flux estimates from successive iterates:

||φ`+1 − φ`|| ≡

(∑J
j=1 |φ

`+1
j − φ`j |2hj∑J
j=1 hj

)1/2

, (17a)

and then we estimate the spectral radius ρ by calculating the ratio

ρ ≈ ||φ
`+1 − φ`||

||φ` − φ`−1||
. (17b)

A method converges if and only if ρ < 1, in which case right side of Eq. (17b) converges as ` → ∞ to the
asymptotic error reduction per iteration – the spectral radius. In Figure 2 below, we plot, for the CMFD and
CQD methods, the numerically-estimated spectral radius versus the optical cell width Σth for Problem 2.

10-2 10-1 100 101

Optical thickness h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
p

e
c
tr

a
l 
ra

d
iu

s

CQD

CMFD

Figure 2: ρ vs Σth for Problem 2 (c = 0.99)

For this problem, the CMFD and CQD methods have remarkably similar stability properties. Both
methods are stable and converge rapidly for optically thin spatial cells. However, as the optical thickness of
cells increases to about 1 mean free path, both methods degrade and eventually become unstable.

Problem 3 is similar to Problem 2. The only changes are that Σs = 0.999 cm−1, and the internal source
is now space-dependent:

Q(x) =

{
0 , 0 < x < X

2 ,

1 , X
2 < x < X .

(18)

The plot of ρ versus Σth is similar to that of Problem 2:

7



Larsen, Paganin, Vasques

10-2 10-1 100 101

Optical thickness h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
p

e
c
tr

a
l 
ra

d
iu

s

CQD

CMFD

Figure 3: ρ vs Σth for Problem 3 (c = 0.999)

Unlike Problems 2 and 3, which are driven by internal sources, Problem 4 is driven by a boundary
source. The parameters of Problem 4 are the same as Problem 2, except that now Σs = 0.9999 cm−1,
Q(x) = 0, and an isotropic flux is incident on the left boundary. The plot of ρ versus Σth is similar to that
of Problems 2 and 3:
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Figure 4: ρ vs Σth for Problem 4 (c = 0.9999)

Overall, the plots in Figures 2, 3, and 4 indicate that the CQD spectral radius is remarkably similar
to the CMFD spectral radius. (We have tested our code on numerous other problems, some with smaller
values of the scattering ratio; for each problem, we saw this same result.) It has been known for years that
CMFD is stable for problems with optically thin spatial cells Σth� 1, but degrades as Σth increases. Our
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experimental results (i) confirm this CMFD behavior, and (ii) show that CQD has nearly identical behavior.
These experimental results lead us to conjecture that if an infinite-medium linearized Fourier analysis of the
CQD method were performed, it would yield the same estimate of the spectral radius as the same analysis
applied to CMFD [5]. We hope to perform this analysis in future work.

4. DISCUSSION

We have shown that by including a transport consistency factor in the low-order Quasidiffusion equa-
tion, one can convert the inconsistent QD method into a consistent CQD method, which preserves the
discretized scalar flux solution of the SN equations. Unfortunately, this consistency factor degrades the sta-
bility of the method. The original QD method is unconditionally stable for problems with any size spatial
grid – provided the angular fluxes do not become negative (this can introduce an instability in the nonlinear
Eddington factors). The CQD method is stable for problems with optically thin spatial cells, but – just like
CMFD – CQD degrades in performance and eventually becomes unstable when the spatial cells become
greater than about one mean free path thick.

The instability in CQD is not caused by the Eddington or boundary factors – it is caused by the transport
consistency factors, which upon convergence are small [they are O(Σth)2]. It seems strange to us that the
“small” transport consistency term has such a significant effect on stability. We are investigating alternate
ways in which this term could be treated, to possibly improve the stability of the method.

For simplicity, the CQD method derived in this paper used the same spatial grid for the low-order
Quasidiffusion equation that was used for the high-order SN equations. However, it is straightforward to
generalize the CQD method to problems in which the low-order diffusion grid is coarser than the high-order
grid, with cross sections that are homogenized (flux-weighted) over the coarse spatial cells. This procedure
is widely-known for CMFD; the same procedure would apply to CQD.

The generalization of the CQD method to multi-dimensional geometries will require the use of Ed-
dington tensors, rather than Eddington factors. (This is a necessary feature of QD simulations.)

We have noted that the CQD method derived in this paper is not the only way to make the QD “con-
sistent;” this has been done in two previous publications [6,7]. In future work, it would be interesting to
compare the performance of the earlier methods with the CQD method presented here. It would be espe-
cially interesting if the previous methods have better stability properties. This might suggest new ways to
improve the stability of CMFD for coarser grids.

The analysis presented in this paper makes it possible to modify a QD (or VEF) code to have the poten-
tial, if the transport consistency factors are “turned on,” to preserve the SN solution. This capability would
allow code users to investigate the accuracy of the QD approximation, for problems in which “transport
effects,” which degrade the accuracy of QD solutions, might be significant.

It would also be possible to use the CQD transport consistency factor selectively. To be specific, the
consistency factor could be “turned on” in “transport” regions where transport effects are considered to be
significant, and “turned off” (set to zero) in “diffusive” regions where transport effects are considered to
be weak. (Effectively, the SN equations would be solved in the “transport” regions, and the QD equations
would be solved in the “diffusive” regions.) If the spatial grids in the “transport regions” are optically thin –
as they should be, to resolve transport effects – then the resulting “partially consistent” QD method should
have improved accuracy, with convergence rates comparable to standard QD.

In conclusion, the ability to make QD fully or partially consistent provides a new and possibly useful
capability to code users. We hope to continue our work on this topic.
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