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ABSTRACT

We have derived an asymptotic approximation to the nonclassical energy-dependent transport
equation with isotropic scattering. This approximation reduces to the classical multigroup diffu-
sion equation under the assumption of classical transport, and therefore it consists of a generaliza-
tion of the classical theory. The nonclassical multigroup diffusion equation can be implemented
in existing multigroup diffusion codes since it preserves the same form of the classical equation
but with modified parameters. We present analytical solutions to the nonclassical multigroup dif-
fusion equation for three test problems in an one-dimensional (1-D) spatially periodic diffusive
system consisting of alternating solid and void layers randomly placed along the x-axis. To assess
the accuracy of these solutions, we compare against benchmark results obtained by (i) generat-
ing a large number of physical realizations of the system, (ii) numerically solving the (classical)
transport equation in each realization, and (iii) ensemble-averaging the solutions over all physical
realizations. The solution of the nonclassical multigroup diffusion equation asymptotically con-
verges to the benchmark numerical solutions as the system becomes more diffusive, validating
the analysis presented.
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1. INTRODUCTION

The nonclassical theory of linear particle transport [1,2] was developed to address transport problems in
which the particle flux is not attenuated exponentially. This can happen in certain inhomogeneous media
in which the locations of the scattering centers are correlated. In these cases, the total cross section Σt

is represented as dependent of the path length s (the distance traveled by the particle since its previous
interaction). Applications of this nonclassical theory include neutron transport in reactor cores (cf. [3]),
radiative transfer in atmospheric clouds (cf. [4]), and computer graphics (cf. [5]).

In this work we consider the steady-state, energy-dependent nonclassical linear transport equation with
isotropic scattering. This equation is written as

∂Ψ

∂s
(s) +Ω · ∇Ψ(s) + Σt(s, E)Ψ(s) =

δ(s)

4π

[∫ ∞

0

∫
4π

∫ ∞

0
c(E′ → E)Σt(s

′, E′)Ψ(x,Ω′, s′, E′)ds′dΩ′dE′ +Q(x, E)

]
,

(1)

where Ψ(s) = Ψ(x,Ω, s, E) is the nonclassical angular flux, c(E′ → E)dE′ is the probability that, after
colliding, a particle with energy in an interval dE′ about E′ will scatter into energy E, and Q(x, E) is
an energy-dependent isotropic source. The total cross section Σt(s, E) is related to the particle free-path
distribution by

p(s, E) = Σt(s, E)e−
∫ s

0
Σt(s′,E)ds′ . (2)
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The one-speed (monoenergetic) nonclassical diffusion equation has been previously derived using different
asymptotic approaches [1,2,6]. However, to our knowledge, this is the first time the nonclassical multigroup
diffusion equation is explicitly presented and analyzed, generalizing the previous result by explicitly includ-
ing energy dependence through the multigroup method. In order to assess the accuracy of this approach, we
compare it against a benchmark solution for a two-group transport problem in a random periodic slab. This
benchmark solution is obtained numerically by ensemble-averaging the solutions of the transport equation
over a large number of physical realizations of the periodic random system. The results validate our analy-
sis, confirming that the nonclassical multigroup diffusion equation generates a solution that asymptotically
approaches that of the transport problem as the system becomes more diffusive.

The remainder of this paper is organized as follows. Section 2 details the asymptotic analysis used to derive
the nonclassical multigroup diffusion equation. In Section 3, we (i) define the test problem and the different
choices of parameters; (ii) discuss the model used to solve the test problems; and (iii) present and analyze
the results. We close the paper in Section 4 with a discussion of the results and intended future work.

2. ASYMPTOTIC ANALYSIS

The multigroup approximation of transport theory is used to discretize the energy variable E into G energy
groups. Let us consider the multigroup representation of the nonclassical transport equation (1) in its initial
value form:

∂Ψ⃗

∂s
(s) +Ω · ∇Ψ⃗(s) + Σt(s)Ψ⃗(s) = 0, s > 0, (3a)

Ψ⃗(0) =
1

4π

[∫
4π

∫ ∞

0
cΣt(s

′)Ψ⃗(x,Ω′, s′)ds′dΩ′ + Q⃗(x)

]
, (3b)

where Ψ⃗(s) = Ψ⃗(x,Ω, s) is a G vector whose gth component is the angular flux of neutrons in group g,
Ψ⃗(0) = lims→0+ Ψ⃗(x,Ω, s) = Ψ⃗(0+), Σt(s) is a G × G diagonal matrix, c is the scattering matrix (a

G × G matrix), and Q⃗(x) is a G vector. Without loss of generality, we will consider the equation for the
last energy group g = G, given by

∂ΨG

∂s
(s) +Ω · ∇ΨG(s) + Σt,G(s)ΨG(s) = 0, s > 0, (4a)

ΨG(0) =
1

4π

[∫
4π

∫ ∞

0
cG→GΣt,G(s

′)ΨG(x,Ω
′, s′)ds′dΩ′ +QG(x)

]
. (4b)

For simplicity, we are not considering upscattering in this work. This implies that cg′→g = 0 ∀ g′ > g,
which is the reason we only consider cG→G in the equation above.

We will now perform an asymptotic analysis on Eqs. (4), following the one presented in [6]. We point out
that we will drop the subscripts G and G→ G from the next steps for clarity of notation.

Defining 0 < ε≪ 1, we perform the following scaling [6]:

Σt(s) =
Σt(s/ε)

ε
, (5a)

c = 1− ε2κ, (5b)

Q(x) = εq(x), (5c)

where κ and q areO(1). This scaling is consistent with the one used in [7] to obtain the multigroup classical
SPN approximations for the multigroup classical transport equation. For m = 1, 2, ... we define the m-th
raw moment of the free-path distribution p(s) for the energy group G as

⟨sm⟩ =
∫ ∞

0
smp(s)ds, (6)

2
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where
p(s) = Σt(s)e

−
∫ s

0
Σt(s′)ds′ . (7)

The following identity holds for m = 1, 2, ...:

⟨sm⟩ = m

∫ ∞

0
sm−1e−

∫ s

0
Σt(s′)ds′ds. (8)

Moreover, using Eqs. (5a), (6), and (7), we can define ⟨sm⟩ such that

⟨sm⟩ = εm
∫ ∞

0

(s
ε

)mΣt(s/ε)

ε
e−

∫ s

0

Σt(s
′/ε)

ε
ds′ds

= εm
∫ ∞

0
smΣt(s)e

−
∫ s

0
Σt(s′)ds′ds

= εm⟨sm⟩ε.

(9)

With this scaling, Eqs. (4) become

∂Ψ

∂s
(s) +Ω · ∇Ψ(s) +

1

ε
Σt(s/ε)Ψ(s) = 0, s > 0,

Ψ(0) =
1

4π

[∫
4π

∫ ∞

0
(1− ε2κ)Σt(s

′/ε)Ψ(x,Ω′, s′)ds′dΩ′ + εq(x)

]
.

Next, we define
Ψ(x,Ω, εs) ≡ Ψε(x,Ω, s),

which satisfies

∂Ψε

∂s
(s) + εΩ · ∇Ψε(s) + Σt(s)Ψε(s) = 0, s > 0,

Ψε(0) =
1

4π

[∫
4π

∫ ∞

0
(1− ε2κ)Σt(s

′)Ψε(x,Ω
′, s′)ds′dΩ′ + εq(x)

]
.

Then, we define

Ψε(x,Ω, s) ≡ ψ(x,Ω, s)
e−

∫ s

0
Σt(s′)ds′

ε⟨s⟩ε
,

such that ψ satisfies

∂ψ

∂s
(s) + εΩ · ∇ψ = 0, s > 0, (10a)

ψ(0) =
1

4π

[∫
4π

∫ ∞

0
(1− ε2κ)p(s′)ψ(x,Ω′, s′)ds′dΩ′ + ε2⟨s⟩εq(x)

]
. (10b)

We remark that the corresponding scalar flux can be recovered by

Φ(x) =

∫
4π

∫ ∞

0
εΨε(x,Ω, s)dsdΩ

=

∫
4π

∫ ∞

0
ψ(x,Ω, s)

e−
∫ s

0
Σt(s′)ds′

⟨s⟩ε
dsdΩ.

(11)

Integrating Eq. (10a) over 0 < s′ < s and using Eq. (10b), we obtain(
I + εΩ · ∇

∫ s

0
(·)ds

)
ψ =

1

4π

[∫ ∞

0
(1− ε2κ)p(s′)φ(x, s′)ds′ + ε2⟨s⟩εq(x)

]
, (12)
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where
φ(x, s) =

∫
4π
ψ(x,Ω, s)dΩ.

Inverting the operator on the left-hand side of Eq. (12) and expanding it in a power series, we obtain

ψ =
( ∞∑
n=0

(−ε)n
(
Ω · ∇

∫ s

0
(·)ds

)n)
× 1

4π

[∫ ∞

0
(1− ε2κ)p(s′)φ(x, s′)ds′ + ε2⟨s⟩εq(x)

]
. (13)

Let us define

∇0 =
1

3
∇2, (14a)

B = ∇0

(∫ s

0
(·)ds

)2
. (14b)

Then, using the identity [8]

1

4π

∫
4π

(
Ω · ∇

∫ s

0
(·)ds

)n
dΩ =

1 + (−1)n

2

(3B)n/2

n+ 1
,

for n = 0, 1, 2, ..., we integrate Eq. (13) over the unit sphere and obtain

φ =
( ∞∑
n=0

1

2n+ 1
(3ε2B)n

)
×
[∫ ∞

0
(1− ε2κ)p(s′)φ(x, s′)ds′ + ε2⟨s⟩εq(x)

]
.

Inverting the operator on the right-hand side of this equation and once again expanding it in a power series,
we get(

I − ε2B − 4ε4

5
B2 − 44ε6

35
B3 +O(ε8)

)
φ =

∫ ∞

0
(1− ε2κ)p(s′)φ(x, s′)ds′ + ε2⟨s⟩εq(x). (15)

The solution of this equation is

φ(x, s) =
(
I + ε2

s2

2!
∇0 +

9ε4

5

s4

4!
∇2

0 +
27ε6

7

s6

6!
∇3

0 +O(ε8)
)
ϕ(x), (16)

where

ϕ(x) =

∞∑
n=0

ε2nϕ2n(x),

with ϕ2n(x) undetermined at this point. We multiply Eq. (16) by e−
∫ s

0
Σt(s′)ds′/⟨s⟩ε and operate on it by∫∞

0 (·)ds. Using Eqs. (8), (9), and (11), we obtain an expression for the scalar flux:

Φ(x) =
(
I + ε2

⟨s3⟩ε
3!⟨s⟩ε

∇0 +
9ε4

5

⟨s5⟩ε
5!⟨s⟩ε

∇2
0 +

27ε6

7

⟨s7⟩ε
7!⟨s⟩ε

∇3
0 +O(ε8)

)
ϕ(x).

Hence, we can write ∫ ∞

0
p(s)φ(x, s)ds =

( ∞∑
n=0

ε2nUn∇n
0

)
Φ(x), (17)

4
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with
U0 = 1,

U1 =
⟨s2⟩ε
2!

− ⟨s3⟩ε
3!⟨s⟩ε

,

U2 =
9

5

[
⟨s4⟩ε
4!

− ⟨s5⟩ε
5!⟨s⟩ε

]
− ⟨s3⟩ε

3!⟨s⟩ε
U1,

U3 =
27

7

[
⟨s6⟩ε
6!

− ⟨s7⟩ε
7!⟨s⟩ε

]
− 9

5

⟨s5⟩ε
5!⟨s⟩ε

U1 −
⟨s3⟩ε
3!⟨s⟩ε

U2,

...

Equation (15) can be rewritten as( ∞∑
n=0

ε2nVn∇n
0

)
Φ(x) = (1− ε2κ)

( ∞∑
n=0

ε2nUn∇n
0

)
Φ(x) + ε2⟨s⟩εq(x), (18)

where
V0 = 1,

V1 = − ⟨s3⟩ε
3!⟨s⟩ε

V0,

V2 = −9

5

⟨s5⟩ε
5!⟨s⟩ε

V0 −
⟨s3⟩ε
3!⟨s⟩ε

V1,

V3 = −27

7

⟨s7⟩ε
7!⟨s⟩ε

V0 −
9

5

⟨s5⟩ε
5!⟨s⟩ε

V1 −
⟨s3⟩ε
3!⟨s⟩ε

V2,

...

Finally, rearranging the terms in Eq. (18) we get( ∞∑
n=0

ε2n[Wn+1∇n+1
0 + κUn∇n

0 ]

)
Φ(x) = ⟨s⟩εq(x), (19)

where Wn = Vn − Un.
We discard the terms of O(ε2) in Eq. (19) and rewrite the equation as

W1∇0Φ(x) + κΦ(x) = ⟨s⟩εq(x).

Using Eq.(14a), we get

−1

6

⟨s2⟩ε
⟨s⟩ε

∇2Φ(x) +
κ

⟨s⟩ε
= q(x).

Finally, we multiply this equation by ε and use Eqs. (5) and (9) to revert to the original unscaled parameters.
We can now reintroduce the subscripts G and G→ G to write

−1

6

⟨s2⟩G
⟨s⟩G

∇2ΦG(x) +
1

⟨s⟩G
ΦG(x) =

cG→G

⟨s⟩G
ΦG(x) +QG(x) , (20)

which is the multigroup nonclassical diffusion equation with isotropic scattering for the energy group g =
G. At last, we can generalize Eq. (20) for each energy group g as

−1

6

⟨s2⟩g
⟨s⟩g

∇2Φg(x) +
1

⟨s⟩g
Φg(x) =

G∑
g′=1

cg′→g

⟨s⟩g′
Φg′(x) +Qg(x), 1 ≤ g ≤ G. (21)

5
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This is a system of G coupled diffusion equations in the G unknowns Φg(x), representing a multigroup
nonclassical diffusion approximation to the nonclassical transport equation (1).

The multigroup m-th raw moment of the multigroup free-path distribution function pg(s) is defined as

⟨sm⟩g =

∫ ∞

0
smpg(s)ds, pg(s) = Σt,g(s)e

−
∫ s

0
Σt,g(s′)ds′ , 1 ≤ g ≤ G. (22)

Thus, the multigroup nonclassical diffusion equation is an asymptotic approximation to the nonclassical
transport equation with an O(ε2) error. We note that this asymptotic analysis requires that the first two
moments of pg(s) exist for all energy groups g [6].

The asymptotic analysis presented in this paper does not provide boundary conditions. However, we can
overcome this limitation by demonstrating that the multigroup nonclassical diffusion equation can be trans-
formed into a classical form with adjusted parameters. By doing so, we can apply classical (Marshak)
vacuum boundary conditions [9]. Moreover, this approach shows that the multigroup nonclassical diffusion
equation can be implemented in existing multigroup diffusion codes with minimal effort.

Let us define

Σ̂t,g = 2
⟨s⟩g
⟨s2⟩g

, 1 ≤ g ≤ G,

Σ̂a,g =
1− cg→g

⟨s⟩g
, 1 ≤ g ≤ G,

Σ̂s,g′→g =
cg′→g

⟨s⟩g′
, 1 ≤ g ≤ G.

Then, the multigroup nonclassical diffusion equation with isotropic scattering (Eq. (21)) can be written in
classical form as

− 1

3Σ̂t,g

∇2Φg(x) + Σ̂a,gΦg(x) =
G∑

g′=1
g′ ̸=g

Σ̂s,g′→gΦg′(x) +Qg(x), 1 ≤ g ≤ G. (23a)

The vacuum boundary conditions for this equation are given by [6]

1

2
Φg(x)−

1

3Σ̂t,g

n · ∇Φg(x) = 0, 1 ≤ g ≤ G. (23b)

If the multigroup free-path distribution is given by the exponential pg(s) = Σt,ge
−Σt,gs, the raw moments

defined in Eq. (22) yield the classical form

⟨sm⟩g =

∫ ∞

0
smΣt,ge

−Σt,gsds =
m!

Σm
t,g

, 1 ≤ g ≤ G. (24)

This implies that Σ̂t,g = Σt,g, Σ̂a,g = Σa,g, and Σ̂s,g′→g = Σs,g′→g, and Eqs. (23) simplify to the classical
multigroup diffusion equation with Marshak vacuum boundary conditions.

3. TEST PROBLEM AND NUMERICAL RESULTS

Numerical results in this work consider transport taking place in a 1-D finite random periodic slab in two
energy groups (G = 2) with vacuum boundaries. The system is formed by a random segment of alternating
layers of two distinct materials (labeled 1 and 2) periodically arranged. We assume material 1 to be the one
in which particles can be born and collide, while material 2 is assumed to be void; a sketch of the periodic
system is given in Figure 1 .

6
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Figure 1: A sketch of the random periodic medium

The width of each layer is 0.5 cm. The total width of the system is given by X = 2M , where M is a positive
integer number. Vacuum boundary conditions are assigned at x = 0 and x = X . Cross sections and sources
of material 1 and 2 for each energy group g are given in Table 1, and the scattering matrix is given by[

c1→1 c1→2

c2→1 c2→2

]
=

[
0.999− 0.1

M2 0.001

0 1− 0.1
M2

]
(25)

where c2→1 = 0 because there is no upscattering in this problem. With this choice of parameters one can
see that, as M increases, the 1-D system approaches the diffusive limit [6].

Table 1: Total cross section (cm−1) and isotropic source (cm−3s−1) of materials 1 and 2

g Σt1,g Q1,g Σt2,g Q2,g

1 0.5 0.2
M2 0 0

2 1.0 0.2
M2 0 0

Taking into account the parameters considered in this summary, we have calculated the first and second mo-
ments of the ensemble-averaged free-path distribution for each energy group g, given in Table 2, using [10]

⟨s⟩g =
2

Σt1,g
, g = 1, 2, (26a)

⟨s2⟩g =
6

Σ2
t1,g

+
1

2Σt1,g

(
e0.5Σt1,g + 1

e0.5Σt1,g − 1

)
, g = 1, 2. (26b)

Table 2: First and second moments of pg(s).

g ⟨s⟩g (cm) ⟨s2⟩g (cm2)

1 4.0 32.04162332837560

2 2.0 8.041494082536797

Because we are conducting simulations within a 1-D slab, we solve the one-dimensional form of Eqs. (23):

− 1

3Σ̂t,1

d2

dx2
Φ1(x) + Σ̂a,1Φ1(x) = Q1(x) , (27a)

− 1

3Σ̂t,2

d2

dx2
Φ2(x) + Σ̂a,2Φ2(x) = Σ̂s,1→2Φ1(x) +Q2(x) , (27b)

7
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with the one-dimensional form of the vacuum boundary conditions

1

2
Φg(0) +

1

3Σ̂t,g

d

dx
Φg(0) = 0, g = 1, 2 , (27c)

1

2
Φg(X)− 1

3Σ̂t,g

d

dx
Φg(X) = 0, g = 1, 2 . (27d)

3.1. Benchmark Model

To generate benchmark results for comparison, we used the same procedure presented in [10]. In this
procedure, we obtain a physical realization of the system by choosing a continuous segment of two full
layers (one of each material) and randomly placing the coordinate x = 0 in this segment. Given this fixed
realization of the system, the cross sections and source are now deterministic functions of space.

We solve the classical multigroup transport equation numerically for this realization using (i) the standard
discrete ordinate method with a 16-point Gauss-Legendre quadrature set (S16); and (ii) diamond spatial
differencing scheme with mesh interval ∆x = 2−7. For each test problem, this procedure is repeated for
2ℓ/∆x = 128 different realizations of the periodic system obtained by shifting the x-coordinates by ∆x
each time. Finally, we calculate the ensemble-averaged scalar flux ⟨Φ⟩g(x) by averaging the resulting scalar
fluxes over all 128 physical realizations.

In all problems, differences in the numerical results for ⟨Φ⟩g(x) were negligible when increasing the number
of mesh intervals, the number of realizations, and the n-th order of the Gauss-Legendre quadrature; thus,
we have concluded that these benchmark results are adequately accurate for the scope of this work.

3.2. Numerical Results

We present solutions for increasing values of M : 15, 30, and 60. The scalar fluxes plotted in Figures
2, 3, and 4 show that the solution to the one-dimensional nonclassical multigroup diffusion equation (27)
asymptotically approaches the benchmark transport solution as M increases and the system approaches the
diffusive limit, as predicted by our asymptotic analysis.

Figure 2: Scalar fluxes (cm−2s−1) obtained with M = 15.

8
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Figure 3: Scalar fluxes (cm−2s−1) obtained with M = 30.

Figure 4: Scalar fluxes (cm−2s−1) obtained with M = 60.

4. DISCUSSION

This paper introduces a multigroup diffusion approximation for the multigroup nonclassical transport equa-
tion with isotropic scattering using an asymptotic analysis. This approximation simplifies to the classical
multigroup diffusion equation under the assumption of classical transport. To the best of our knowledge,
this is the first explicit derivation of a multigroup generalization to the monoenergetic nonclassical diffusion
equation.

It is important to note that the asymptotic analysis used here has a constraint: the first two raw moments
of the multigroup free-path distribution pg(s) must be finite. While the analysis does not provide boundary
conditions, we demonstrate that the nonclassical multigroup diffusion equation can be transformed into a

9
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classical form with adjusted parameters. As a result, we can use Marshak vacuum boundary conditions to
generate numerical results. The significant advantage of this method is that the nonclassical multigroup
diffusion equation can be implemented in current multigroup diffusion codes.

Theoretical predictions were validated for a 1-D random periodic system. These findings provide a foun-
dation for gaining a more comprehensive understanding of the diffusive behavior of nonclassical transport
theory. In future work, we will perform numerical simulations in nonclassical multi-dimensional systems
and investigate its accuracy for different choices of nonexponential path length distributions pg(s). In ad-
dition, we plan to simulate various test problems and compare our findings to those obtained using atomic
mix diffusion and nonclassical Monte Carlo models. We will also expand the analysis to include linearly
anisotropic scattering.
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