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ABSTRACT

The nonclassical transport equation is used to mathematically model transport problems where
the particle flux is not exponentially attenuated. In this paper, we apply the spherical harmonics
expansion to the nonclassical formulation to derive a system of equations for the nonclassical
flux moments. We show that these equations simplify to the well-known classical PN equations
when the free-path distribution function is exponential. Numerical results for test problems in
slab-geometry are given to verify the derivation.

KEYWORDS: Nonclassical transport, spherical harmonics, PN approximations

1. INTRODUCTION

In the past decade, interest in the theory of nonclassical particle transport has increased. This theory focuses
on problems in which the distance-to-collision is not exponentially distributed, as is the case in the classical
theory of particle transport. Originally motivated by problems arising in measurements of photon path
length in the Earth’s cloudy atmosphere [1], the nonclassical theory has since provided contributions to
transport problems in many other fields, including applications to pebble-bed reactors [2], Lorentz gases
[3], and computer graphics [4], to name a few.

The generalized linear Boltzmann equation (GLBE), also known as the nonclassical transport equation,
was introduced in [5,6] to address nonclassical transport problems. In this equation the phase space is
expanded to include the new independent variable s, a “memory” variable representing the distance traveled
by the particle since its previous interaction (the particle’s free-path); this was later extended to include
angular-dependent free-paths [7]. Different approximations to the GLBE have been proposed, such as
nonclassical diffusion [6–8] and nonclassical simplified PN equations [9,10]. Recently, a deterministic
spectral approach was developed, in which the s-dependence is treated through a Laguerre polynomial
expansion [11,12]. However, to the best of our knowledge, no attempt has yet been presented to derive
spherical harmonic approximations for nonclassical transport, generalizing the PN approximations to the
classical linear Boltzmann equation [13].

In particle transport problems, spherical harmonic (PN ) approximations [14] are often used to eliminate the
dependence on the direction-of-flight variable, such that the particle flux is approximated by a truncated
Legendre expansion for the angular variable [13]. This paper’s main contribution is the derivation of a
system of equations for the spherical harmonic moments of the nonclassical particle flux, given in Section 2.
In Section 3, we present numerical results for two test problems in slab geometry, comparing the solution of
the nonclassical spherical harmonic approximations to those obtained with other established methods, both
classical and nonclassical. We conclude this paper with a discussion in Section 4.
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2. NONCLASSICAL SPHERICAL HARMONIC APPROXIMATIONS

Let us consider the steady-state, monoenergetic nonclassical linear Boltzmann equation [6]

∂

∂s
Ψ(x,Ω, s) +Ω · ∇Ψ(x,Ω, s) + Σt(s)Ψ(x,Ω, s) = (1)

δ(s)

[∫
4π

∫ ∞

0
cP (Ω′ ·Ω)Σt(s

′)Ψ(x,Ω′, s′)ds′dΩ′ +Q(x,Ω)

]
.

Here, x = (x, y, z) is a point in space and Ω = (Ωx,Ωy,Ωz) = (
√
1− µ2 cosω,

√
1− µ2 sinω, µ) is the

particle’s direction of flight, with ω and µ representing the azimuthal angle and the cosine of the polar angle,
respectively. The internal source is represented by Q(x,Ω), and s is the distance traveled by the particle
since its previous interaction (birth or scattering). Moreover, Σt(s) is the nonclassical total macroscopic
cross section, defined such that Σt(s)ds represents the probability that a particle, scattered or born at any
point x and traveling in the direction Ω, will experience a collision between x + sΩ and x + (s + ds)Ω.
The function Ψ(x,Ω, s) denotes the nonclassical particle angular flux, and c represents the scattering ratio,
defined as the probability that a particle will scatter after it experiences a collision. The Dirac delta function
δ(s) on the right-hand side of Eq. (1) implies that, when a particle is born or undergoes scattering, its s
value is set to 0.

The term P (Ω′ ·Ω)dΩ denotes the probability that, when a particle with direction of flight Ω′ scatters, its
outgoing direction of flight will lie in dΩ about Ω. We can write P (Ω′ · Ω) as the Legendre polynomial
expansion

P (Ω′ ·Ω) =
∞∑

n′=0

2n′ + 1

4π
an′Pn′(Ω′ ·Ω), (2)

where Pn′(Ω′·Ω) is the n′-th order Legendre polynomial and an′ is the corresponding expansion coefficient.
The Addition Theorem for spherical harmonics [14] states that

Pn′(Ω′ ·Ω) =
4π

2n′ + 1

n′∑
m′=−n′

Yn′,m′(Ω)Y ∗
n′,m′(Ω′), (3)

where Yn′,m′ is the spherical harmonic function of order n′ and degree m′, defined for 0 ≤ |m′| ≤ n′ by

Yn′,m′(Ω) = (−1)(m
′+|m′|)/2

[
2n′ + 1

4π

(n′ − |m′|)!
(n′ + |m′|)!

]1/2
(1− µ2)|m

′|/2
(

d

dµ

)|m′|
Pn′(µ)eim

′ω , (4)

and Y ∗
n′,m′ is its complex conjugate, such that Yn′,m′(Ω) = (−1)m

′
Y ∗
n′,−m′(Ω). Substituting Eqs. (2)

and (3) into Eq. (1), we obtain

∂

∂s
Ψ(x,Ω, s) +Ω · ∇Ψ(x,Ω, s) + Σt(s)Ψ(x,Ω, s) = (5)

δ(s)

∞∑
n′=0

n′∑
m′=−n′

an′Yn′,m′(Ω)

∫ ∞

0

∫
4π

Y ∗
n′,m′(Ω′)cΣt(s

′)Ψ(x,Ω′, s′)ds′dΩ′ + δ(s)Q(x,Ω) .

Next, we introduce the following spherical harmonic expansions for the nonclassical angular flux

Ψ(x,Ω, s) =
∞∑
n=0

n∑
m=−n

ϕn,m(x, s)Yn,m(Ω) , (6a)

ϕn,m(x, s) =

∫
4π

Y ∗
n,m(Ω)Ψ(x,Ω, s)dΩ , (6b)
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and internal source

Q(x,Ω) =
∞∑
n=0

n∑
m=−n

Qn,m(x)Yn,m(Ω) , (7a)

Qn,m(x) =

∫
4π

Y ∗
n,m(Ω)Q(x,Ω)dΩ . (7b)

With the goal of deriving a system of equations for the nonclassical flux moments defined in Eq. (6b), we

substitute Eqs. (6) and (7) into Eq. (5) and then operate on the resulting equation by
∫
4π

Y ∗
n,m(Ω)(·)dΩ.

Since the spherical harmonic functions are orthonormal [14], we can use Eqs. (6b) and (7b) to obtain

∂

∂s
ϕn,m(x, s) +

∂

∂x

∫
4π

ΩxY
∗
n,m(Ω)Ψ(x,Ω, s)dΩ+

∂

∂y

∫
4π

ΩyY
∗
n,m(Ω)Ψ(x,Ω, s)dΩ+

∂

∂z

∫
4π

ΩzY
∗
n,m(Ω)Ψ(x,Ω, s)dΩ+ (8)

Σt(s)ϕn,m(x, s) = δ(s)

∫ ∞

0
ancΣt(s

′)ϕn,m(x, s′)ds′ + δ(s)Qn,m(x).

The spherical harmonic functions satisfy [14]

√
1− µ2eiwYn,m(Ω) =

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
Yn−1,m+1(Ω) (9a)

−
[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m+1(Ω) ,

√
1− µ2e−iwYn,m(Ω) = −

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
Yn−1,m−1(Ω) (9b)

+

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m−1(Ω) ,

µYn,m(Ω) =

[
n2 −m2

(2n− 1)(2n+ 1)

]1/2
Yn−1,m(Ω) +

[
(n+ 1)2 −m2

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m(Ω) . (9c)

Combining Eqs. (9a) and (9b) yields the useful identities

ΩxYn,m(Ω) =
√
1− µ2 cosωYn,m(Ω) =

√
1− µ2

[
eiω + e−iω

2

]
Yn,m(Ω)

=
1

2

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
Yn−1,m+1(Ω)

− 1

2

[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m+1(Ω) (10a)

− 1

2

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
Yn−1,m−1(Ω)

+
1

2

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m−1(Ω) ,

3



S. A. Agbo, L. R. C. Moraes, and R. Vasques

ΩyYn,m(Ω) =
√

1− µ2 sinωYn,m(Ω) =
√
1− µ2

[
eiω − e−iω

2i

]
Yn,m(Ω)

= − i

2

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
Yn−1,m+1(Ω)

+
i

2

[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m+1(Ω) (10b)

− i

2

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
Yn−1,m−1(Ω)

+
i

2

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
Yn+1,m−1(Ω) .

We use identity (10a) and Eqs. (6) to rewrite the second term in the left-hand side of Eq. (8) as

∂

∂x

∫
4π

ΩxY
∗
n,m(Ω)Ψ(x,Ω, s)dΩ =

∂

∂x

(
1

2

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m+1(x, s)

− 1

2

[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m+1(x, s) (11a)

− 1

2

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m−1(x, s)

+
1

2

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m−1(x, s)

)
.

Likewise, we use identity (10b) and Eqs. (6) into the third term in the left-hand side of Eq. (8) to obtain

∂

∂y

∫
4π

ΩyY
∗
n,m(Ω)Ψ(x,Ω, s)dΩ =

∂

∂y

(
− i

2

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m+1(x, s)

+
i

2

[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m+1(x, s) (11b)

− i

2

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m−1(x, s)

+
i

2

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m−1(x, s)

)
.

Finally, keeping in mind that Ωz = µ, we use Eq. (9c) and Eqs. (6) to write the fourth term in the left-hand
side of Eq. (8) as

∂

∂z

∫
4π

ΩzY
∗
n,m(Ω)Ψ(x,Ω, s)dΩ = (11c)

∂

∂z

([
n2 −m2

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m(x, s) +

[
(n+ 1)2 −m2

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m(x, s)

)
.
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The results given in Eqs. (11) make it possible to express Eq. (8) in terms of the spherical harmonic moments
of the nonclassical angular flux. Equation (8) can now be written as

∂

∂s
ϕn,m(x, s)

+
∂

∂x

(
1

2

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m+1(x, s)

− 1

2

[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m+1(x, s)

− 1

2

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m−1(x, s)

+
1

2

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m−1(x, s)

)

+
∂

∂y

(
− i

2

[
(n−m− 1)(n−m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m+1(x, s) (12)

+
i

2

[
(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m+1(x, s)

− i

2

[
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m−1(x, s)

+
i

2

[
(n−m+ 1)(n−m+ 2)

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m−1(x, s)

)

+
∂

∂z

([
n2 −m2

(2n− 1)(2n+ 1)

]1/2
ϕn−1,m(x, s) +

[
(n+ 1)2 −m2

(2n+ 1)(2n+ 3)

]1/2
ϕn+1,m(x, s)

)

+Σt(s)ϕn,m(x, s) = δ(s)

∫ ∞

0
ancΣt(s

′)ϕn,m(x, s′)ds′ + δ(s)Qn,m(x) .

Equation (12) is exactly satisfied by the spherical harmonic expansion coefficients ϕn,m(x, s) of the angular
flux solution Ψ(x,Ω, s) of Eq. (1), for all integers n and m satisfying 0 ≤ |m| ≤ n.

The Nonclassical Spherical Harmonic Approximations (NSHA) are attained by selecting positive, odd in-
teger values of N (the order of the approximation) and prescribing the approximation ϕn,m(x, s) = 0 for
all n > N . For any given N , the remaining nonzero expansion coefficients are unknowns to be determined,
and the resulting approximation to the nonclassical angular flux is:

Ψ(x,Ω, s) ≈
N∑

n=0

n∑
m=−n

ϕn,m(x, s)Yn,m(Ω) . (13)

If we consider classical transport (i.e., the free-path length distribution being given by an exponential), then
Σt is independent of s. In that case, we can operate on Eq. (12) by

∫∞
−ε(·)ds to obtain an equation for the

classical moments ϕn,m(x) =
∫∞
0 ϕn,m(x, s)ds. Defining ϕn,m(x,−ε) = ϕn,m(x,∞) = 0 takes care of

the first term of the equation. Moreover, the product ancΣt is simply the n-th coefficient of the Legendre
polynomial expansion for the classical differential scattering cross section [13]

Σs(Ω ·Ω′) =

∞∑
n=0

2n+ 1

4π
[ancΣt]Pn(Ω ·Ω′) =

∞∑
n=0

2n+ 1

4π
[Σs,n]Pn(Ω ·Ω′) . (14)

5
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Thus, after operating on Eq. (12) by
∫∞
−ε(·)ds, we subtract the first term on the right-hand side from the

last term on the left-hand side to obtain [Σt − Σs,n]ϕn,m. The resulting equation is the classical first-order
partial differential equation for the spherical harmonic moments of the classical angular flux.

3. NUMERICAL RESULTS

In this section we provide a preliminary validation of the proposed method, focusing on obtaining numerical
solutions to two test problems in slab-geometry with an isotropic internal source. In this case, Eq. (1)
reduces to

∂

∂s
Ψ(z, µ, s) + µ

∂

∂z
Ψ(z, µ, s) + Σt(s)Ψ(z, µ, s) = (15)

δ(s)

[∫ 1

−1

∫ ∞

0
cP (µ′, µ)Σt(s

′)Ψ(z, µ′, s′)ds′dµ′ +
Q(z)

2

]
,

and Eq. (12) simplifies to

∂

∂s
ϕn(z, s) +

∂

∂z

(
n

2n+ 1
ϕn−1(z, s) +

n+ 1

2n+ 1
ϕn+1(z, s)

)
+Σt(s)ϕn(z, s) = (16)

δ(s)

∫ ∞

0
ancΣt(s

′)ϕn(z, s
′)ds′ + δ(s)Q(z)δn,0 ,

where δn,0 is a Kronecker delta.

In this paper we present solutions to the approximations of order N = 1 and N = 3. The NSHA of order
N = 1 is given by equations

∂

∂s
ϕ0(z, s) +

∂

∂z
ϕ1(z, s) + Σt(s)ϕ0(z, s) = δ(s)

∫ ∞

0
a0cΣt(s

′)ϕ0(z, s
′)ds′ +Q(z), (17a)

∂

∂s
ϕ1(z, s) +

∂

∂z

(
1

3
ϕ0(z, s)

)
+Σt(s)ϕ1(z, s) = δ(s)

∫ ∞

0
a1cΣt(s

′)ϕ1(z, s
′)ds′ ; (17b)

and the NSHA of order N = 3 yields the following system:

∂

∂s
ϕ0(z, s) +

∂

∂z
ϕ1(z, s) + Σt(s)ϕ0(z, s) = δ(s)

∫ ∞

0
a0cΣt(s

′)ϕ0(z, s
′)ds′ + δ(s)Q(z) , (18a)

∂

∂s
ϕ1(z, s) +

∂

∂z

(
1

3
ϕ0(z, s) +

2

3
ϕ2(z, s)

)
+Σt(s)ϕ1(z, s) = δ(s)

∫ ∞

0
a1cΣt(s

′)ϕ1(z, s
′)ds′ , (18b)

∂

∂s
ϕ2(z, s) +

∂

∂z

(
2

5
ϕ1(z, s) +

3

5
ϕ3(z, s)

)
+Σt(s)ϕ2(z, s) = δ(s)

∫ ∞

0
a2cΣt(s

′)ϕ2(z, s
′)ds′ , (18c)

∂

∂s
ϕ3(z, s) +

∂

∂z

(
3

7
ϕ2(z, s)

)
+Σt(s)ϕ3(z, s) = δ(s)

∫ ∞

0
a3cΣt(s

′)ϕ3(z, s
′)ds′ . (18d)

Equations (17) and (18) were numerically solved using Mark boundary conditions [15] and a similar ap-
proach to the one presented in [11,12], i.e., representing the independent variable s in terms of Laguerre
polynomials and applying the Diamond Difference method to treat the spatial variable z. We report numer-
ical results for the scalar flux

Φ(z) =

∫ 1

−1

∫ ∞

0
Ψ(z, µ, s)dsdµ , (19a)

where the approximation to the nonclassical angular flux is recovered by the Legendre polynomial expan-
sion

Ψ(z, µ, s) ≈
N∑

n=0

2n+ 1

2
ϕn(z, s)Pn(µ) . (19b)

6
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As discussed in the previous section, we point out that, for the case of classical transport (Σt independent
of s), Eq. (15) reduces to the transport equation [6,13]

µ
∂

∂z
Ψ(z, µ) + ΣtΨ(z, µ) =

∫ 1

−1
Σs(µ

′, µ)Ψ(z, µ′)dµ′ +
Q(z)

2
, (20)

and Eq. (16) reduces to the classical PN equations in slab geometry

∂

∂z

(
n

2n+ 1
ϕn−1(z) +

n+ 1

2n+ 1
ϕn+1(z)

)
+ [Σt − Σs,n]ϕn(z) = Q(z)δn,0 , (21)

with Eqs. (17) and (18) simplifying to their classical P1 and P3 counterparts, respectively.

3.1. Test Problem I (Classical Transport)

As a first test, we consider the case of classical transport taking place in a 20 cm slab with vacuum bound-
aries. We assume isotropic scattering, which means a0 = 1 and a1 = a2 = a3 = 0 in Eqs. (17) and (18). A
spatially uniform source emitting Q = 1 particles/cm3s is embedded into the slab.

The slab is centered at the origin (−10 ≤ z ≤ 10) and it is composed of a homogeneous material with total
cross section Σt(s) = Σt = 1 cm−1. In this case, Σt is independent of s, and the free-path distribution is
simply the exponential p(s) = e−s. Under these assumptions, the solution from NSHA should match the
one obtained by solving the classical PN equations.

Table 1 shows the scalar fluxes as defined by Eq. (19a) for three different values of the scattering ratio c at
different points in the slab. These were generated by first solving the NSHA in Eqs. (17) and (18) for ϕn,
and then calculating the nonclassical angular flux according to Eq. (19b). We compared these results with
the scalar fluxes obtained by analytically solving the corresponding (classical) P1 and P3 equations [16];
the absolute values of the relative differences between these approaches are given in Table 1 as |Relative
Deviation|. The results confirm our expectation that the NSHA match the classical PN approximations
when Σt is independent of s; in fact, the classical P1 and P3 equations are particular cases of the more
general Eqs. (17) and (18), respectively.

3.2. Test Problem II (Nonclassical Transport)

For the second test problem, we make only one change in the assumptions of the problem in Section 3.1:
we assume the free-path length distribution to be nonexponential, given by the simple gamma distribution
[17]

p(s) = se−s. (22a)

In this case, the nonclassical total cross section is given by

Σt(s) =
s

1 + s
, (22b)

and the classical PN approximations no longer apply.

Table 2 presents the scalar fluxes at different points in the slab for different values of the scattering ratio
c, generated with the flux moments obtained by solving Eqs. (17) and (18). To check the accuracy of the
NSHA in this problem, we solved Eq. (15) for the nonclassical angular flux Ψ(z, µ, s) with the method
presented in [11], and calculated the scalar flux as in Eq. (19a). These results were compared with the
NSHA results, with |Relative Deviation| values also reported in Table 2.

We see that the NSHA yield accurate results for this nonclassical problem. The accuracy of the results
improves with increasing N from 1 to 3, and we expect higher values of N to produce more accurate
results. Accuracy decreases as one moves further from the center of the slab towards the boundaries, which
can be attributed to the Mark boundary conditions used to solve Eqs. (17) and (18) being approximations of
the vacuum boundary conditions used in solving Eq. (15).

7



S. A. Agbo, L. R. C. Moraes, and R. Vasques

Table 1: NSHA results and relative deviations from classical PN solutions

aaacaaa
Distance |z| from the center of the slab

aaaaaa0aaaaaa aaaaaa2aaaaaa aaaaaa4aaaaaa aaaaaa6aaaaaa aaaaaa8aaaaaa aaaaaa10aaaaaa

Scalar flux obtained with NSHA of order N = 1 a

0 1.000000 c 1.000000 0.999985 0.999516 0.984444 0.500000

0.5 1.999989 1.999935 1.999251 1.991304 1.899064 0.828427

0.9 9.936532 9.894472 9.712544 9.149618 7.459587 2.402467

|Relative deviation| from classical P1 solution b

0 8.93E-10 1.15E-08 2.75E-07 5.88E-06 9.56E-05 1.00E-17

0.5 5.95E-08 2.79E-07 2.40E-06 1.86E-05 1.13E-04 1.77E-13

0.9 6.08E-06 8.53E-06 1.72E-05 3.55E-05 6.49E-05 5.05E-08

Scalar flux obtained with NSHA of order N = 3 a

0 0.999997 0.999984 0.999837 0.998332 0.982099 0.500000

0.5 1.999933 1.999753 1.998248 1.987304 1.904595 0.828427

0.9 9.930010 9.887637 9.709208 9.178460 7.639344 2.402446

|Relative deviation| from classical P3 solution b

0 2.84E-08 1.18E-07 8.91E-07 6.21E-06 5.86E-05 5.00E-13

0.5 1.88E-07 5.59E-07 2.96E-06 1.48E-05 8.79E-05 1.87E-11

0.9 5.93E-06 8.06E-06 1.54E-05 3.08E-05 7.08E-05 5.93E-08

a - Scalar flux generated by the solution of Eqs. (17) (for N = 1) and Eqs. (18) (for N = 3), together
with Eqs. (19). The Spectral Approach (SA) [11] was used to deal with the s variable, and the
Diamond Difference (DD) method was used to deal with the z variable. The truncation order in
the SA is M = 0, and the spatial domain was discretized in 240 nodes in the DD method [12].

b - Scalar flux generated by the analytical solution of the P1 and P3 equations [16].
c - Read as 1.000000 particles/cm2s.

4. DISCUSSION

In this study, we have employed spherical harmonics expansions to the nonclassical transport equation to
derive nonclassical spherical harmonic approximations (NSHA). In the general case described in Eq. (12),
an approximation of degree N contains (N + 1)2 expansion coefficients ϕn,m(x, s) and (N + 1)2 equa-
tions. We have shown that, if we consider the total cross section to be independent of the free-path s, the
nonclassical spherical harmonic equation (12) simplifies to its well-known classical PN counterpart.

We have presented numerical results for two test problems in slab geometry, confirming that (i) the PN

approximations are a particular case of the NSHA, being equivalent in the case of classical transport; and (ii)
the NSHA can be used to approximate solutions of the nonclassical transport equation for nonexponential
free-path distributions.

It is important to point out that Eqs. (12) and (16) (and, consequently, Eqs. (17) and (18)) are integro-
differential equations for the flux moments, with an improper integral in the free-path variable s. These
are significantly more complex than the first-order partial differential equations for the flux moments in
the classical PN approximation, which means that current PN codes cannot be used to directly solve these
nonclassical equations. It also means that one cannot easily eliminate the odd-order spherical harmonic flux
moments, which can be done in classical PN equations to obtain a system of coupled second-order partial
differential equations for the even-order flux moments.

In future work, we will attempt to establish a connection between the NSHA and the previously derived
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Table 2: NSHA results and relative deviations from nonclassical transport solutions

aaacaaa
Distance |z| from the center of the slab

aaaaaa0aaaaaa aaaaaa2aaaaaa aaaaaa4aaaaaa aaaaaa6aaaaaa aaaaaa8aaaaaa aaaaaa10aaaaaa

Scalar flux obtained with NSHA of order N = 1 a

0 1.999999 c 1.999993 1.999813 1.995661 1.914716 1.000000

0.5 3.998388 3.995758 3.979284 3.895212 3.470627 1.595865

0.9 18.746047 18.474119 17.540398 15.539919 11.605984 4.370842

|Relative deviation| from nonclassical transport solution b

0 2.43E-05 9.03E-05 6.06E-04 3.23E-03 6.01E-04 1.10E-09

0.5 4.05E-04 7.01E-04 1.70E-03 2.15E-03 1.60E-02 6.70E-03

0.9 6.62E-04 1.49E-03 4.83E-03 1.44E-02 4.43E-02 1.10E-02

Scalar flux obtained with NSHA of order N = 3 a

0 1.999957 1.999817 1.998536 1.988883 1.919310 1.000000

0.5 3.996753 3.992885 3.972122 3.886158 3.533263 1.600203

0.9 18.750404 18.492001 17.610049 15.741791 12.106256 4.391332

|Relative deviation| from nonclassical transport solution b

0 3.35E-06 2.65E-06 3.27E-05 1.81E-04 3.00E-03 1.10E-09

0.5 3.75E-06 1.83E-05 9.95E-05 1.80E-04 1.80E-03 4.00E-03

0.9 4.30E-04 5.28E-04 8.75E-04 1.57E-03 3.11E-03 6.34E-03

a - Scalar flux generated by the solution of Eqs. (17) (for N = 1) and Eqs. (18) (for N = 3), together
with Eqs. (19). The Spectral Approach (SA) [11] was used to deal with the s variable, and the
Diamond Difference (DD) method was used to deal with the z variable. The truncation order in
the SA is M = 2, and the spatial domain was discretized in 240 nodes in the DD method [12].

b - Scalar flux generated by solving Eq. (15) with the procedure presented in [11].
c - Read as 1.999999 particles/cm2s.

nonclassical Simplified PN (nonclassical SPN ) equations [9,10]. These equations only contain the moments
of the free-path distribution as input parameters, with s not being present as an independent variable, which
makes them compatible with current SPN codes. We will also explore problems with different free-path
distributions, and will work on numerical solutions for problems with anisotropic scattering and higher
spatial dimensions. In addition, we will investigate how different choices of boundary conditions [18]
affect the solutions of the NSHA for different problems.
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[3] J. Marklof and A. Strömbergsson, “Power-law distributions for the free path length in Lorentz gases”, Journal
of Statistical Physics, 155, 1072-1086, 2014.

[4] B. Bitterli, S. Ravichandran, T. Müller, M. Wrenninge, J. Novák, S. Marschner, and W. Jarosz, “A Radiative
Transfer Framework for Non-exponential Media”, In: ACM Transactions on Graphics, 37.6 (November 2018).

9



S. A. Agbo, L. R. C. Moraes, and R. Vasques

[5] E.W. Larsen, “A Generalized Boltzmann Equation for Non-Classical Particle Transport”, Proceedings of Inter-
national Topical Meeting on Mathematics, Computation and Supercomputing in Nuclear Applications, Mon-
terey, California, 2007.

[6] E.W. Larsen and R. Vasques, “A generalized linear Boltzmann equation for non-classical particle transport”,
Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 619–631, 2011.

[7] R. Vasques and E.W. Larsen, “Non-classical particle transport with angular-dependent path-length distributions.
I: Theory”, Annals of Nuclear Energy, 70, 292-300, 2014.

[8] M. Frank and W. Sun, “Fractional diffusion limits of non-classical transport equations”, Kinetic and Related
Models, 11, 1503–1526, 2018.

[9] R. Vasques and R.N. Slaybaugh, “Simplified PN equations for nonclassical transport with isotropic scattering”,
Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear
Science and Engineering, Jeju, South Korea, 2017.

[10] R.K. Palmer and R. Vasques, “Asymptotic derivation of the simplified PN equations for nonclassical transport
with anisotropic scattering”, Journal of Computational and Theoretical Transport, 49, 331-348, 2020.

[11] R. Vasques, L.R.C. Moraes, R.C. Barros, and R.N. Slaybaugh, “A Spectral Approach for Solving the Nonclas-
sical Transport Equation”, Journal of Computational Physics, 402, 109078, 2020.

[12] L.R.C. Moraes, J.K. Patel, R.C. Barros, and R. Vasques, “An improved spectral approach for solving the non-
classical neutral particle transport equation”, Journal of Quantitative Spectroscopy and Radiative Transfer, 490,
108282, 2022.

[13] J.J. Duderstadt and W.R. Martin, Transport Theory, Wiley-Interscience Publications, New York, USA (1979).

[14] G. Sansone, Orthogonal Functions: Revised English Edition, Dover Publications, New York, USA (2012).

[15] J.A. Davis, “Variational vacuum boundary conditions for a PN approximation”, Nuclear Science and Engineer-
ing, 25, 189-197, 1966.

[16] A. Souza da Silva, R.C. Barros, and H. Alves Filho, “Implementação computacional de metodologia analı́tica de
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