[P6] Particle transport in the 1-D diffusive atomic mix limit


Conference paper


Edward W. Larsen, Richard Vasques, Marco T. Vilhena
Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Avignon, France, 2005 Sep

View PDF
Cite

Cite

APA   Click to copy
Larsen, E. W., Vasques, R., & Vilhena, M. T. (2005). [P6] Particle transport in the 1-D diffusive atomic mix limit. In Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications. Avignon, France.


Chicago/Turabian   Click to copy
Larsen, Edward W., Richard Vasques, and Marco T. Vilhena. “[P6] Particle Transport in the 1-D Diffusive Atomic Mix Limit.” In Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications. Avignon, France, 2005.


MLA   Click to copy
Larsen, Edward W., et al. “[P6] Particle Transport in the 1-D Diffusive Atomic Mix Limit.” Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, 2005.


BibTeX   Click to copy

@inproceedings{edward2005a,
  title = {[P6] Particle transport in the 1-D diffusive atomic mix limit},
  year = {2005},
  month = sep,
  address = {Avignon, France},
  journal = {Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications},
  author = {Larsen, Edward W. and Vasques, Richard and Vilhena, Marco T.},
  month_numeric = {9}
}

ABSTRACT: A multiple length-scale asymptotic analysis shows that 1-D diffusive heterogeneous-media transport problems are accurately modeled by the atomic mix approximation when the optical widths of the “chunks” of different materials are O(1). (The atomic mix approximation is commonly known to be valid only when the chunks of different materials are optically thin.) The analysis also shows that for the same class of problems, the Standard, or Levermore-Pomraning (LP) model does not have the correct asymptotic behavior. Numerical results are given that validate the theoretical predictions.

Share



Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in