[P36] Derivation of spherical harmonic approximations to the nonclassical particle transport equation


Conference paper


Sunday A. Agbo, Leonardo R.C. Moraes, Richard Vasques
Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Niagara Falls, Canada, 2023 Aug

View PDF
Cite

Cite

APA   Click to copy
Agbo, S. A., Moraes, L. R. C., & Vasques, R. (2023). [P36] Derivation of spherical harmonic approximations to the nonclassical particle transport equation. In Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Niagara Falls, Canada.


Chicago/Turabian   Click to copy
Agbo, Sunday A., Leonardo R.C. Moraes, and Richard Vasques. “[P36] Derivation of Spherical Harmonic Approximations to the Nonclassical Particle Transport Equation.” In Proceedings of International Conference on Mathematics &Amp; Computational Methods Applied to Nuclear Science &Amp; Engineering, Niagara Falls, Canada, 2023.


MLA   Click to copy
Agbo, Sunday A., et al. “[P36] Derivation of Spherical Harmonic Approximations to the Nonclassical Particle Transport Equation.” Proceedings of International Conference on Mathematics &Amp; Computational Methods Applied to Nuclear Science &Amp; Engineering, Niagara Falls, Canada, 2023.


BibTeX   Click to copy

@inproceedings{sunday2023a,
  title = {[P36] Derivation of spherical harmonic approximations to the nonclassical particle transport equation},
  year = {2023},
  month = aug,
  journal = {Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Niagara Falls, Canada},
  author = {Agbo, Sunday A. and Moraes, Leonardo R.C. and Vasques, Richard},
  month_numeric = {8}
}

ABSTRACT:  The nonclassical transport equation is used to mathematically model transport problems where the particle flux is not exponentially attenuated. In this paper, we apply the spherical harmonics expansion to the nonclassical formulation to derive a system of equations for the nonclassical flux moments. We show that these equations simplify to the well-known classical PN equations when the free-path distribution function is exponential. Numerical results for test problems in slab-geometry are given to verify the derivation.

Share



Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in